Intervention for Algebra I

Module 1: Teacher Masters

M
The Meadows Center
$\xlongequal[\text { for preventing educational risk }]{ }$

TEA
TEXAS EDUCATION AGENCY

TE XAS

What Starts Here Changes the World

The Meadows Center

FOR PREVENTING EDUCATIONAL RISK THE UNIVERSITY OF TEXAS AT AUSTIN COLLEGE OF EDUCATION

Mathematics Institute for Learning Disabilities and Difficulties

www.meadowscenter.org

©2012 University of Texas System/Texas Education Agency

These materials are copyrighted © by and are the property of the Texas Education Agency and the University of Texas System and may not be reproduced or distributed without their written permission, except by Texas public school educators under the following conditions:

1. Any portion reproduced or distributed is used exclusively for nonprofit educational purposes in Texas.
2. No monetary charge is made for the reproduced materials, any document containing them, or any activity at which they are distributed; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.
3. No modifications or changes are made to the materials by anyone without the express written permission of the University of Texas System and the Texas Education Agency.

To obtain a license to reprint large quantities, or to use the materials in a manner not specified above, contact copyrights@tea.state.tx.us

Brainstorm

List symbols that are used in mathematics.

E ngage Prior Knowledge Practice Key

Brainstorm

List symbols that are used in mathematics.

Other possible symbols:
$\geq \quad>\quad<\quad=\quad \neq 1$

Determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle "Example" or "Nonexample" and justify your reasoning in the space provided.

1. $1 \mathrm{~g}=1,000 \mathrm{mg}$

Example or Nonexample
Because \qquad
\qquad
2. $3 x-1=y$

Example or Nonexample
Because \qquad
3.

Example or Nonexample
Because \qquad
4.

4 cm
Example or Nonexample
Because \qquad

Determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle "Example" or "Nonexample" and justify your reasoning in the space provided.

1. $1 \mathrm{~g}=1,000 \mathrm{mg}$
Example or Nonexample

Because "g" and "mg" are abbreviations for units of measure
\qquad
2. $3 x-1=y$
Example or \quad Nonexample
Because " x " and " y " represent a set of values
3.

Example
or
Nonexample
Because "a" represents the value of the length of 1 side
4.

Example or
Nonexample
Because "cm" is an abbreviation for a unit of measure

ractice

Activity 1: Guided Practice

Determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle "Example" or "Nonexample" and justify your reasoning in the space provided.

$$
3^{3} \geq 25
$$

Example or Nonexample
Because there are no symbols that represent 1 value or set of
values

1. $5 \mathrm{~m}=500 \mathrm{~cm}$

Example or Nonexample
Because \qquad
\qquad
2. N

Example or Nonexample
Because \qquad
\qquad
3. $V=\frac{100}{p}$

Example or Nonexample
Because \qquad

Practice (cont.)

Activity 2: Pair Practice

Work with your partner to determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle "Example" or "Nonexample" and justify your reasoning in the space provided.
$5 x-1=13$
Example or Nonexample
Because the variable " x " represents 1 value in the equation
1.

Example or Nonexample
Because \qquad
2. \square
Example or Nonexample
Because \qquad
\qquad
3. $100 \mathrm{~cm}=1 \mathrm{~m}$

Example or Nonexample
Because \qquad

ractice Key

Activity 1: Guided Practice

Determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle "Example" or "Nonexample" and justify your reasoning in the space provided.

$$
3^{3} \geq 25
$$

Example or Nonexample
Because there are no symbols that represent a value or set of
values

1. $5 \mathrm{~m}=500 \mathrm{~cm}$

Example or Nonexample
Because "m" and "cm" are units that label the numbers as 5
meters and 500 centimeters
2. N

Example or Nonexample
Because "A," "B," and "C" label the vertices, or corners, of the
triangle
3. $V=\frac{100}{p}$
Example or Nonexample

Because " V " and " p " represent a set of unknown values

Activity 2: Pair Practice

Work with your partner to determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle "Example" or "Nonexample" and justify your reasoning in the space provided.
$5 x-1=13$

Because the variable " x " represents a value in the equation
1.

4
Example or Nonexample
Because " x " represents the value for the side length
2.

Because "ft" is an abbreviation for the unit feet and "in" is the unit inches
3. $100 \mathrm{~cm}=1 \mathrm{~m}$

Example or

Nonexample
Because "cm" represents the unit centimeter and "m"
represents the unit meters
\qquad

I ndependent Practice

 Score: / 11 correct1. Fill in the blank with the correct term. (1 pt.)

A \qquad is a symbol, usually a letter, that represents 1 value or set of values.
2. Determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle all examples and cross out all nonexamples. Be prepared to justify your answer. Each situation is worth 1 point.

$1 \mathrm{~m}=0.001 \mathrm{~km}$

$p \geq 13$

$$
15(p)-7=2
$$

$24 \mathrm{in}=2 \mathrm{ft}$
$4^{3}=64$

$$
\sqrt{9}=3
$$

I ndependent Practice Key
 1. Fill in the blank with the correct term. (1 pt.)

A variable is a symbol, usually a letter, that represents 1 value or set of values.
2. Determine whether each of the following situations represents an example of a variable or a nonexample of a variable. Circle all examples and cross out all nonexamples. Be prepared to justify your answer. Each situation is worth 1 point.

For each question, circle the letter of the correct response.

1. An example of a variable is (1 pt.)
A

B

2. A situation that does not use a variable is (1 pt.)
A $3(p)^{2}+8-\frac{10}{2}$
B $\left\{(7+1)^{2}-9\right\}+4$

umulative Review Practice Key

For each question, circle the letter of the correct response.

1. An example of a variable is (1 pt.)

2. A situation that does not use a variable is (1 pt.)
A $3(p)^{2}+8-\frac{10}{2}$
B $\left\{(7+1)^{2}-9\right\}+4$

(D)emonstration Practice

For the following number puzzles, write the equations and determine the missing values for the fixed unknown variables.
1.

2.

(D)emonstration Practice (cont.)

3.

4.

For the following number puzzles, write the equations and determine the missing values for the fixed unknown variables.
1.

2.

Demonstration Practice Key (cont.)

3.

4.

Pair Practice

With your partner, for each of the following number puzzles, determine what the fixed unknown variable represents.

1. Determine the value for the variable that is a fixed unknown.

The variable g represents \qquad
2. Determine the value for the variable that is a fixed unknown.

The variable h represents \qquad
3. Determine the value for the variable that is a fixed unknown.

The variable a represents \qquad

Pair Practice

With your partner, for each of the following number puzzles, determine what the fixed unknown variable represents.

1. Determine the value for the variable that is a fixed unknown.

The variable g represents \qquad
2. Determine the value for the variable that is a fixed unknown.

The variable h represents \qquad 6
3. Determine the value for the variable that is a fixed unknown.

The variable a represents \qquad -5

rror Correction Practice

The given situations are work completed by two different students. Determine which student is incorrect and explain the error.

Question:

For the following equations, determine the value of the fixed unknown variable.

$$
\begin{aligned}
& 6 h=24 \\
& 6+h=10
\end{aligned}
$$

Student 1

$6 h=24 \quad 6+h=10$
$6 h=24$ $6+h=10$
$\frac{6 h}{6}=\frac{24}{6} \quad-6 \quad-6$
$h=4$
$h=4$
$h=18$
$h=4$

rror Correction Practice Key

The given situations are work completed by two different students. Determine which student is incorrect and explain the error.

Question:

For the following equations, determine the value of the fixed unknown variable.

$$
\begin{aligned}
& 6 h=24 \\
& 6+h=10
\end{aligned}
$$

Student 1

$$
\begin{array}{ccccc}
6 h=24 & 6+h=10 & 6 h=24 & 6+h=10 \\
\frac{6 h}{6}=\frac{24}{6} & -6 \quad-6 & -6 \quad-6 & -6 & -6 \\
h=4 & h=4 & h=18 & h=4
\end{array}
$$

Student 2

Student 2 is incorrect because when solved, the variable h is
representing 2 different values. Student 2 subtracted 6 in the first
equation rather than dividing by 6 .

Name:

\qquad

I ndependent Practice

For each of the following number puzzles, determine the value of the fixed unknown variable that makes the puzzle true. Each puzzle is worth 1 point.
1.

The variable k represents \qquad
2.

The variable z represents \qquad
3.

The variable h represents

I independent Practice Key

\qquad / 3 correct

For each of the following number puzzles, determine the value of the fixed unknown variable that makes the puzzle true. Each puzzle is worth 1 point.
1.

The variable k represents \qquad
2.

The variable z represents \qquad
3.

The variable h represents \qquad

Score: \qquad / 4 correct

1. Determine which of the following situations is an example of a variable. For each item, circle the letter of the correct response. (1 pt.)
A $1,000 \mathrm{~g}=\mathbf{2 . 2} \mathrm{lb}$
C
25

B

D $81<10^{2}$
2. For the following problem, determine the value that makes the number puzzle true.

The variable b represents \qquad (1 pt.)
\qquad

1. Determine which of the following situations is an example of a variable. For each item, circle the letter of the correct response. (1 pt.)
A $1,000 \mathrm{~g}=\mathbf{2} .2 \mathrm{lb}$

B

D $81<10^{2}$
2. For the following problem, determine the value that makes the factor puzzle true.

The variable b represents \qquad (1 pt.)

The following equations represent a pattern. Determine the pattern for each set of equations and use variables to write a generalization of the pattern.

1. $2(1)=2 \quad$ Check your generalization.
$3(1)=3$
$4(1)=4$
5(1) $=5$
In each equation we \qquad

The variable \qquad represents \qquad
\qquad
because \qquad
\qquad
The generalization for this pattern is \qquad
In other words: \qquad
2. $6-6=0 \quad$ Check your generalization.
$7-7=0$
$8-8=0$
In each equation we \qquad
\qquad
The variable \qquad represents \qquad
\qquad
because \qquad
\qquad
The generalization for this pattern is \qquad
In other words: \qquad
3. $\frac{2}{1}=2$

Check your generalization.
$\frac{4}{1}=4$
$\frac{8}{1}=8$
In each equation we \qquad
\qquad
The variable \qquad represents \qquad
because \qquad
\qquad
The generalization for this pattern is \qquad
In other words: \qquad

The following equations represent a pattern. Determine the pattern for each set of equations and use variables to write a generalization of the pattern.

1. $2(1)=2 \quad$ Check your generalization.
$3(1)=3 \quad a(1)=a$ (answers will vary)
$4(1)=4 \quad 10(1)=10 \sqrt{ }$
$5(1)=5$
In each equation we \qquad multiply by 1
The variable _a_represents the numbers 2, 3, 4 and 5
because the numbers change from equation to equation

The generalization for this pattern is \qquad $a(1)=a$

In other words: a number multiplied by 1 will equal itself
2. $6-6=0 \quad$ Check your generalization.
$7-7=0 \quad b-b=0$ (answers will vary)
$8-8=0 \quad 10-10=0 \sqrt{ }$
In each equation we \qquad subtract a number from itself and get 0

The variable \qquad represents \qquad the numbers 6,7 , and 8
because the numbers change from equation to equation

The generalization for this pattern is $b-b=0$

In other words:
a number subtracted from itself equals 0

Demonstration Practice Key (cont.)

3. $\frac{2}{1}=2$
$\frac{4}{1}=4$
$\frac{8}{1}=8$

Check your generalization.
$\frac{c}{1}=c$ (answers will vary)
$\frac{10}{1}=10 \sqrt{ }$

In each equation we divide a number by 1 and get the same number
\qquad
The variable \qquad represents \qquad
because the numbers change from equation to equation

The generalization for this pattern is $\frac{c}{1}=c$ In other words: \qquad a number divided by 1 will equal itself

Pair Practice

The following equations represent a pattern. With your partner, determine the pattern for each set of equations and match to the correct generalization equation.

Pattern Equations

$-2(0)=0$

1. $-1(0)=0$
$5(0)=0$
$7-7=0$
2. $8-8=0$
$15-15=0$
$-4(1)=-4$
3. $3(1)=3$
$8(1)=8$
$\frac{-2}{1}=-2$
4. $\frac{0}{1}=0$
$\frac{2}{1}=2$

Generalizations

A $a(1)=a$

B $b(0)=0$

C $\frac{c}{1}=c$

D $d-d=0$

Pair Practice

The following equations represent a pattern. With your partner, determine the pattern for each set of equations and match to the correct generalization equation.

Pattern Equations

$-2(0)=0$

1. $-1(0)=0$
$5(0)=0$
B
$7-7=0$
2. $8-8=0$
$15-15=0$
$-4(1)=-4$
3. $3(1)=3$
$8(1)=8$
$\frac{-2}{1}=-2$
4. $\frac{0}{1}=0$
$\frac{2}{1}=2$
A

C

Generalizations

A $a(1)=a$

B $b(0)=0$

C $\frac{c}{1}=c$

D $d-d=0$

rror Correction Practice

The given situations are work completed by two different students. Determine which student is incorrect and explain the error.

Question:

Write the equation that represents the generalization from the set of numeric equations.

$$
\begin{array}{r}
-3+0=-3 \\
-1+0=-1 \\
1+0=1 \\
3+0=3
\end{array}
$$

Student 1

$-x+0=x$

Student 2

$x+0=x$

rror Correction Practice Key

The given situations are work completed by two different students. Determine which student is incorrect and explain the error.

Question:

Write the equation that represents the generalization from the set of numeric equations.

$$
\begin{array}{r}
-3+0=-3 \\
-1+0=-1 \\
1+0=1 \\
3+0=3
\end{array}
$$

Student 1

$$
-x+0=x
$$

Student 2

$x+0=x$

Student 1 is incorrect because the variable should not be negated or
taken the opposite of the value.

Name:

\qquad

I ndependent Practice

 Score: / 4 correctDetermine the pattern for each set of equations and match to the correct generalization equation. Each match is worth 1 point.

Pattern Equations

$$
10+0=10
$$

1. $20+0=20$
$35+0=35$
$3(1)=3$
2.

$$
4(1)=4
$$

\qquad C $h+0=h$

$$
11(1)=11
$$

$$
4-4=0
$$

D $a(0)=0$
3. $7-7=0$
$9-9=0$
$-7(0)=0$
4. $15(0)=0$

$$
-8(0)=0
$$

\qquad / 4 correct

Determine the pattern for each set of equations and match to the correct generalization equation. Each match is worth 1 point.

Pattern Equations

$$
10+0=10
$$

1. $20+0=20$

$$
35+0=35
$$

$$
3(1)=3
$$

2. $4(1)=4$
$11(1)=11$
$4-4=0$
A
C $h+0=h$

D $a(0)=0$
3. $7-7=0$ B
$9-9=0$
$-7(0)=0$
4. $15(0)=0 \quad D$
$-8(0)=0$

1. Determine the fixed unknown value that makes the number puzzle true.

The variable n represents \qquad (1 pt.)
2. The following 3 equations represent a pattern. Determine the pattern.

$$
\begin{aligned}
& 5-0=5 \\
& 7-0=7 \\
& 8-0=8
\end{aligned}
$$

Which of the following generalizations best represents the pattern? (1 pt.)
A $h-0=h$
B $h+0=h$
C $h-h=0$
D $h(1)=h$

1. Determine the fixed unknown value that makes the number puzzle true.

2. The following 3 equations represent a pattern. Determine the pattern.

$$
\begin{aligned}
& 5-0=5 \\
& 7-0=7 \\
& 8-0=8
\end{aligned}
$$

Which of the following generalizations best represents the pattern? (1 pt.)
(A) $h-0=h$

B $h+0=h$
C $h-h=0$
D $h(1)=h$

Use the pattern in the tile design to fill out each table and use a variable to write a generalization.
1.

Common Difference:
Generalization: \qquad

Demonstration Practice (cont.)

2.

Common Difference:
Generalization: \qquad

Use the pattern in the tile design to fill out each table and use a variable to write a generalization.
1.

Common Difference: 4

Generalization: 4n

Demonstration Practice Key (cont.)
2.

Common Difference: 3

Generalization: $3 n$

Guided Practice

Use the pattern in the tile design to fill out each table and use a variable to write a generalization.
1.

Stage 1

Stage 2

Stage 3

Stage 4

(Stage) \boldsymbol{n}	Thinking Process	Total
1		
2		
3		
4		

Common Difference:

\qquad
Generalization: \qquad

Pair Practice

Use the pattern in the tile design to fill out each table and use a variable to write a generalization.
1.

Stage 2

Stage 3

Stage 4

(Stage) \boldsymbol{n}	Thinking Process	Total
1		
2		
3		
4		

Common Difference: \qquad
Generalization: \qquad

P ractice Key

Guided Practice

Use the pattern in the tile design to fill out each table and use a variable to write a generalization.
1.

Stage 1

Stage 2

Stage 3

Stage 4

(Stage) \boldsymbol{n}	Thinking Process	Total	$\left\{\begin{array}{l} +6 \\ +6 \end{array}\right.$
1	$\begin{array}{lll}\oplus & \oplus & \oplus \\ \oplus & \oplus & \oplus\end{array}$	6	
2		12	
3	+ \oplus \oplus \oplus \oplus \oplus \oplus	18	$+6$
4		24	ℓ

Common Difference: 6

Generalization: $6 n$

Pair Practice

Use the pattern in the tile design to fill out each table and use a variable to write a generalization.
1.

Stage 2

Stage 3
Stage 4

(Stage) \boldsymbol{n}	Thinking Process	Total	$\left\{\begin{array}{l} +2 \\ +2 \end{array}\right.$
1	$\oplus \oplus(1)$	2	
2	$\stackrel{\oplus}{\oplus}+\left(\begin{array}{l}\text { ¢ }\end{array}\right.$	4	
3	$\begin{array}{ll} \hline \oplus & \oplus \\ \oplus & \oplus \\ \hline & \oplus \end{array}$	6	$\}_{+2}$
4	$\stackrel{\oplus}{\oplus}+\oplus(\oplus) 4(2)$	8	2

Common Difference: 2

Generalization: $2 n$

Name:

I ndependent Practice

Use the pattern in the tile design to fill out each table and use a variable to write a generalization. (13 pts.)
1.

Stage 1

Stage 2

Stage 3

Stage 4

(Stage) \boldsymbol{n}	Thinking Process	Total
1		
2		
3		
4		

Common Difference: \qquad
Generalization: \qquad

Use the pattern in the tile design to fill out each table and use a variable to write a generalization. (13 pts.)
1.

Stage 1
Stage 2

Stage 3

Stage 4

Common Difference: 3

Generalization: $3 n$

1. Determine the pattern and select the correct generalization. (1 pt.)

$$
\begin{aligned}
& \frac{-3}{1}=-3 \\
& \frac{8}{1}=8 \\
& \frac{13}{1}=13
\end{aligned}
$$

A $\frac{3}{1}=3$
C $\frac{n}{1}=1$
B $\frac{n}{1}=-n$
D $\frac{n}{1}=n$
2. Use the pattern in the tile design to fill out the table and use a variable to write a generalization of this pattern.

Stage 1 Stage $2 \quad$ Stage $3 \quad$ Stage 4

Stage	Process	Total
1	\oplus	2
2	$\oplus \oplus \oplus \oplus$	4
3	$\begin{aligned} & \oplus \oplus \oplus \oplus \oplus \\ & \oplus \oplus \end{aligned}$	6
4	$\begin{array}{llll} \hline \oplus & \oplus & \oplus & \oplus \\ \oplus & \oplus & \oplus & \oplus \end{array}$	8

Which of the following is the correct generalization for the pattern in the table? (1 pt.)
A $2 n$
C $6 n$
B $n+3$
D $n+2$

1. Determine the pattern and select the correct generalization. (1 pt.)

$$
\begin{aligned}
& \frac{-3}{1}=-3 \\
& \frac{8}{1}=8 \\
& \frac{13}{1}=13
\end{aligned}
$$

A $\frac{3}{1}=3$
C $\frac{n}{1}=1$
B $\frac{n}{1}=-n$
(D) $\frac{n}{1}=n$
2. Use the pattern in the tile design to fill out the table and use a variable to write a generalization of this pattern.

Stage	Process	Total	$\left\{\begin{array}{l} \frac{+2}{+2} \\ \frac{+2}{+} \end{array}\right.$
1	(+) \oplus	2	
2	$\oplus \oplus(\oplus$	4	
3	$\begin{aligned} & \oplus \oplus \oplus \oplus \oplus \oplus \\ & \oplus \oplus \oplus \end{aligned}$	6	
4	$\begin{aligned} & \oplus \oplus \oplus \oplus \oplus \\ & \oplus \oplus \oplus \oplus \oplus \end{aligned}$	8	

Which of the following is the correct generalization for the pattern in the table? (1 pt.)
(A) $2 n$
C $6 n$
B $n+3$
D $n+2$
emonstration Practice

	Stage 1	Stage 2	Stage 3	
Term		Thinking		Total
1	$\oplus \oplus$			2
2	$\oplus \oplus$	$\oplus \oplus$		4
3	$\begin{aligned} & \oplus \oplus \\ & \oplus \oplus \end{aligned}$	$\oplus \oplus$		6
4	$\oplus \oplus$	$\oplus \oplus$		8
n	_ group(s) of	plus	(

-

emonstration Practice (cont.)

emonstration Practice Key

For the following problems, determine the pattern from the table and use variables to write a generalization of the pattern.
Stage 1 \qquad

The generalization of this pattern is $\quad 2 n$
emonstration Practice Key (cont.)

Patterns, Part III Teacher Master
ractice

Q
Guided Practice
Determine the pattern from the table and use a variable to write a generalization of the pattern.

Term	Thinking Process	Total
1	$\oplus \oplus \oplus \oplus \oplus\left(\begin{array}{\|c\|c} \\ \hline\end{array}\right)+\underline{3}$	8
2	$2(5)+3$	13
3	$\begin{array}{ll} \oplus & \underline{~} \oplus(\underline{5})+\underline{3} \\ \oplus \oplus \oplus \oplus \oplus \oplus \oplus \end{array}$	18
4		23

Pair Practice

With a partner, determine the pattern from the table and use a variable to write a generalization of
the pattern.

The generalization of this pattern is $4 n+1$

TM

The generalization of this pattern is

[^0]1. Use the pattern blocks and the table below to answer the questions.

Stage 1

Stage 2
Stage 3

Stage	Thinking Process	Total Number of Tiles
1		4
2		8
3		12

Which of the following is the correct generalization? (1 pt.)
A $2 n$
B $n+8$
C $4 n$
D $n+4$
2. Look at the table below.

Term	Thinking Process		Total
1	$\oplus \oplus \oplus \oplus \oplus$	$(1)(3)+2$	5
2	$\stackrel{\oplus}{\oplus} \stackrel{\oplus}{\oplus} \stackrel{\oplus}{\oplus}+\oplus \oplus$	$(2)(3)+2$	8
3	$\begin{aligned} & \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \\ & \oplus \oplus \\ & \oplus \end{aligned} \oplus \oplus \oplus$	$(3)(3)+2$	11
4	$\begin{aligned} & \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \\ & \oplus \stackrel{\oplus}{\oplus} \stackrel{\oplus}{\oplus} \oplus \\ & \oplus \oplus \oplus \\ & \oplus \end{aligned}$	$(4)(3)+2$	14
n			??

Which of the following is the correct generalization for the pattern in the table? (1 pt.)

A $3 n$
B $n+5$
C $n+2$
D $3 n+2$

1. Use the pattern blocks and the table below to answer the questions.

Stage 1

Stage 2
Stage 3

Stage	Thinking Process	Total Number of Tiles
1		4
2		8
3		12
+4		

Which of the following is the correct generalization? (1 pt.)
A $2 n$
B $n+8$
C $4 n$
D $n+4$
2. Look at the table below.

Term	Thinking Process		Total
1	$\oplus \oplus \oplus \oplus \oplus$	$(1)(3)+2$	5
2	$\stackrel{\oplus}{\oplus} \stackrel{\oplus}{\oplus} \stackrel{\oplus}{\oplus}+\oplus \oplus$	$(2)(3)+2$	8
3	$\begin{aligned} & \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \\ & \oplus \oplus \\ & \oplus \end{aligned} \oplus \oplus \oplus \oplus \oplus$	$(3)(3)+2$	11
4	$\begin{aligned} & \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \\ & \oplus \oplus \oplus \\ & \oplus \oplus \\ & \oplus \\ & \oplus \\ & \oplus \\ & \oplus \end{aligned}+9$	$(4)(3)+2$	14
n			??

Which of the following is the correct generalization for the pattern in the table? (1 pt.)

A $3 n$
B $n+5$
C $n+2$
D $3 n+2$
emonstration Practice

-

emonstration Practice (cont.)

The Meadows Center for Preventing Educational Risk—Mathematics Institute
emonstration Practice Key
Determine the pattern from the table and use a variable to write a generalization of the pattern.

The generalization of this pattern is $\quad 2 n+1$
emonstration Practice Key (cont.)

Term	Thinking Process		Total
1	$\stackrel{\oplus \oplus}{\oplus} \oplus \oplus \oplus$	$\underline{1}(\underline{2})+3$	5
2	$\stackrel{\oplus \oplus(\oplus) \oplus}{\oplus \oplus}$	$\underline{2}(\underline{2})+3$	7
3	$\frac{\oplus \oplus \oplus \oplus \oplus(\oplus)}{\oplus \oplus \oplus \oplus \oplus}$	$3(2)+3$	9
4		$4(2)+3$	11
n	n groups of 2 plus 3 extra	$n(\underline{2})+3$	$2 n+3$

Pattern, Part IV Teacher Master
ractice
0

The student circled the counters in the Process column and wrote the numeric statements.
Student conclusion:
The generalization for this pattern is $2 n+1$.
VARIABLES
TM
Pattern, Part IV Teacher Master

The generalization of this pattern is

[^1]
C umulative Review Practice

Score: \qquad / 2 correct

1. Use the completed table to answer the following question.

(Stage) n	Thinking Process	Total
1	(+¢ \oplus (9) 1(3)	3
2	$\begin{array}{ll} \hline \oplus \oplus \oplus & \\ \oplus \oplus \oplus & 2(3) \\ \hline(\oplus \oplus \end{array}$	6
3	$\begin{aligned} & \oplus \oplus \oplus\binom{\oplus \oplus}{\oplus \oplus \oplus(} \\ & \oplus \oplus \oplus(3) \\ & \hline \oplus \oplus \end{aligned}$	9
4		12
n		??

Which of the following is the correct generalization of the table's pattern? (1 pt.)
A $3 n$
B $3 n+3$
C $n+3$
D $n+2$
2. Use the completed table to answer the following question.

Which of the following is the correct generalization of the table's pattern? (1 pt.)
A $n+1$
B $3 n+2$
C $3 n$
D $5 n+2$

(๑) UMUUATIVE Review practice Key

Score:

1. Use the completed table to answer the following question.

(Stage) \boldsymbol{n}	Thinking Process	Total
1		3
2	$\begin{array}{ll} \hline \oplus \oplus \oplus & \\ \oplus \oplus \oplus & 2(3) \\ \hline \oplus \oplus & \\ \hline 9 \end{array}$	6
3		9
4		12
n		??

Which of the following is the correct generalization of the table's pattern? (1 pt.)
A $3 n$
B $3 n+3$
C $n+3$
D $n+2$
2. Use the completed table to answer the following question.

(Stage) n	Thinking Process	Total
1	$\oplus \oplus \oplus \oplus \oplus 1(3)+2$	5
2	$\underset{\oplus \oplus \oplus \oplus}{\oplus \oplus \oplus}+\infty \quad 2(3)+2$	8
3		11
4		14
n		??

Which of the following is the correct generalization of the table's pattern? (1 pt.)
A $n+1$
B $3 n+2$
C $3 n$
D $5 n+2$

Brainstorm:

Addition	Subtraction	Multiplication	Division	Equals

For the following situations, define the variables that are appropriate and write an equation to describe the relationship.

1. The sum of a number and 7 is 15 .

Variable(s): \qquad

Equation:

\qquad
2. The product of the first number and 3 is equal to the second number.

Variable(s): \qquad
\qquad
Equation: \qquad
3. The quotient of the first number and 2 is equal to the second number. Variable(s): \qquad
\qquad
Equation: \qquad
4. The second number is 3 less than the first number. Variable(s): \qquad

Equation: \qquad

Brainstorm:

Addition	Subtraction	Multiplication	Division	Equals
add	subtract	multiply	divide	is
plus	minus	product	quotient	is equal to
sum	difference	times	halved	makes
more than	less than	double	third	totals
		twice	quartered	gives

For the following situations, define the variables that are appropriate and write an equation to describe the relationship.

1. The sum of a number and 7 is 15 .

Variable(s): $\quad n=$ the value of the number

Equation: $n+7=15$
2. The product of the first number and 3 is equal to the second number.
Variable(s): $\quad f=$ the value of the first number

$$
h=\text { the value of the second number }
$$

Equation:

$$
3 f=h
$$

3. The quotient of the first number and 2 is equal to the second number.

Variable(s): $\quad a=$ the value of the first number
$b=$ the value of the second number
Equation: $\frac{a}{2}=b$
(note: the letter choice of the variable may vary)
4. The second number is 3 less than the first number.

Variable(s): $\quad c=$ the value of the first number
$d=$ the value of the second number
Equation: \qquad $d=c-3$

Pair Practice

For the following situation, work with your partner to define each variable and then match each verbal situation to the correct equation.

Verbal Description

1. The quotient of the first number and 9 is equal to the second number.
$a=$ \qquad
$b=$ \qquad
2. The difference of the number and 9 equals the second number.
$a=$ \qquad
$b=$ \qquad
3. A number is equal to 9 more than the second number.
$a=$ \qquad
$b=$ \qquad

Pair Practice

For the following situation, work with your partner to define each variable and then match each verbal situation to the correct equation.

Verbal Description

1. The quotient of the first number and 9 is equal to the second number.
$a=$ the value of a number $b=$ the value of the second number
2. The difference of the number and 9 equals the second number. $a=$ the value of a number $b=$
\qquad
3. A number is equal to 9 more
than the second number.
$a=\underline{\text { the value of a number }}$
$b=\underline{\text { the value of the second number }}$

Equation

A $a=b+9$

B $\quad \frac{a}{9}=b$

C $a-9=b$

Name:

\qquad
ndependent Practice
Score: / 12 correct

For the following situation, define each variable and then match each verbal situation to the correct equation. Each problem is worth 3 points.

Verbal Description

1. The difference between two numbers is 2 .

$$
a=
$$

\qquad
$b=$ \qquad
2. The quotient of the first number and 2 is equal to the second number.
$a=$ \qquad
$b=$ \qquad
3. The second number is 2 more than the first number.
$a=$ \qquad
$b=$ \qquad
4. The product of the number and 2 is equal to the second number.
$a=$ \qquad
$b=$ \qquad

For the following situation, define each variable and then match each verbal situation to the correct equation. Each problem is worth 3 points.

Verbal Description

1. The difference between two numbers is 2 . $a=\underline{\text { the value of a number }}$ $b=\underline{\text { the value of the second number }}$
2. The quotient of the first number and 2 is equal to the second number.
$a=$ \qquad $b=\underline{\text { the value of the second number }}$
3. The second number is $/ 2$ more than the first number.
$a=$ the value of the first number
$b=\underline{\text { the value of the second number }}$
4. The product of the number and 2 is equal to the second number.
$a=\underline{\text { the value of a number }}$
$b=\underline{\text { the value of the second number }}$

Equation

A $\frac{a}{2}=b$

B $\quad b=a+2$

C $a-b=2$

Score: \qquad / 2 correct

1. Use the completed table to answer the following question.

Term	Thinking Process		Total
1	$\oplus \oplus \oplus(\oplus)$	1(4)+1	5
2	$\begin{array}{llll} \hline \oplus & \oplus & \oplus & \oplus \\ \hline & \oplus & \oplus & \oplus \\ \hline+ & \oplus & \oplus & \end{array}$	$2(4)+1$	9
3	+ \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus	$3(4)+1$	13
4	$\begin{aligned} & \oplus \oplus \\ & \hline \oplus \end{aligned}$	$4(4)+1$	17
n			??

Which of the following is the correct generalization of the table's pattern? (1 pt.)
A $n+4$
C $4 n$
B $4 n+1$
D $5 n+1$
2. Read the following situations and select the equation that represents the relationship given in the word problem. (1 pt.)

The product of the first number and 12 is equal to the second number. $a=$ the value of the first number. $b=$ the value of the second number.
A $12 b=a$
C $12 a=b$
B $a \cdot b=12$
D $12-a=b$

C umulative Review Practice Key

1. Use the completed table to answer the following question.

Term	Thinking Process		Total
1	$\oplus \oplus \oplus(\oplus+$	$1(4)+1$	5
2	$\begin{array}{\|l\|ccc\|} \hline \oplus & \oplus & \oplus & \oplus \\ \hline \oplus & \oplus & \oplus & \oplus \end{array}$	$2(4)+1$	9
3	$\begin{array}{lllll} \hline & \oplus & \oplus & \oplus & \oplus \\ \hline \oplus & \oplus & \oplus \\ \oplus & \oplus & \oplus & \oplus \\ \hline & \oplus & \oplus & \oplus \\ \hline \end{array}$	$3(4)+1$	13
4	$\begin{array}{\|llll} \hline \oplus & \oplus & \oplus & \oplus \\ \hline \oplus & \oplus & \oplus & \oplus \\ \hline \oplus & \oplus & \oplus & \oplus \\ \hline \oplus & \oplus & \oplus & \oplus \\ \hline \end{array}$	$4(4)+1$	17
n			??

Which of the following is the correct generalization of the table's pattern? (1 pt.)
A $n+4$
C $4 n$

B $4 n+1$
D $5 n+1$
2. Read the following situations and select the equation that represents the relationship given in the word problem. (1 pt.)

The product of the first number and 12 is equal to the second number. $a=$ the value of the first number. $b=$ the value of the second number.
A $12 b=a$
C $12 a=b$
B $a \cdot b=12$
D $12-a=b$

For the following situation, define the variables that are appropriate and write an equation to describe the relationship.

1. The second number is 5 more than twice the first number.

Variable(s): \qquad

Equation: \qquad
2. Double the first number is equal to the difference of the second number and 1 .

Variable(s): \qquad
\qquad
Equation: \qquad
3. The quotient of the first number and 3 plus 7 is the second number.

Variable(s): \qquad

Equation: \qquad
4. The product of the first number and 8 is equal to the sum of the second number and 4.

Variable(s): \qquad
\qquad
Equation: \qquad

Demonstration Practice Key

For the following situation, define the variables that are appropriate and write an equation to describe the relationship.

1. The second number is 5 more than twice the first number.

Variable(s): $\quad x=$ the value of the first number
$w=$ the value of the second number
Equation: \qquad $w=2 x+5$ or $w=5+2 x$
2. Double the first number is equal to the difference of the second number and 1 .

Variable(s): \quad f \quad the value of the first number
$b=$ the value of the second number
Equation: \qquad $2 f=b-1$
3. The quotient of the first number and 3 plus 7 is the second number.

Variable(s): $\quad h=$ the value of the first number
$c=$ the value of the second number
Equation: \qquad $\frac{h}{3}+7=c$
4. The product of the first number and 8 is equal to the sum of the second number and 4.

Variable(s): \quad _ $\quad g=$ the value of the first number
$d=$ the value of the second number
Equation: $\quad 8 g=d+4$

ractice

Pair Practice

With your partner, define each variable in the space provided. Draw a line to match each word problem to the correct equation. Be prepared to justify your answers.

Verbal Description

1. Twice the first number minus 6
is equal to the second number.
$g=$ \qquad
$d=$ \qquad
2. The quotient of the first number and 2
is 6 more than the second number.
$g=$ \qquad
$d=$ \qquad
3. The difference of the first number and the second number is equal to the product of 6 and 2 .
$g=$ \qquad $d=$ \qquad

ractice Key

Pair Practice

With your partner, define each variable in the space provided. Draw a line to match each word problem to the correct equation. Be prepared to justify your answers.

Verbal Description

Equation

1. Twice the first number minus 6

A $\quad g-d=6(2)$ is equal to the second number. $g=$ the value of the first number $d=\underline{\text { the value of the second number }}$
2. The quotient of the first number and 2 B $\quad 2 g-6=d$ is 6 more than the second number. $g=$ the value of the first number $d=$ the value of the second number
3. The difference of the first number and

C $\quad \frac{g}{2}=d+6$ the second number is equal to the product of 6 and 2 .
$g=$ the value of the first number $d=$ the value of the second number

rror Correction Practice

The given situations are work completed by two different students. Determine which student is incorrect and explain the error.

Write the equation from the given verbal description.
The product of the first number and 5 is equal to 3 less than the second number.

Student 1:
$5 x=y-3$
$5+x=3-y$

rror Correction Practice Key

The given situations are work completed by two different students. Determine which student is incorrect and explain the error.

Write the equation from the given verbal description.
The product of the first number and 5 is equal to 3 less than the second number.

Student 1:

$$
5 x=y-3
$$

$$
5+x=3-y
$$

Student 2 is incorrect. The product of the first number
and 5 should be $5 x$, not $5+x$.
\qquad
ndependent Practice
Score: / 12 correct

Define each variable in the space provided. Draw a line to match each word problem to the correct equation. Be prepared to justify your answers. Each problem is worth 3 points.

Verbal Description

1. 5 added to triple the first number
is the second number.
$f=$ \qquad
$h=$ \qquad
2. The first number times 5 is 3 less than the second number.
$f=$ \qquad
$h=$ \qquad
3. The sum of the first number and triple the second number is 5 .
$f=$ \qquad
$h=$ \qquad
4. The quotient of the first number and 5 is equal to the difference
of the second number and 3 .
$f=$ \qquad
$h=$ \qquad

That Vary, Part II Teacher Master

Define each variable in the space provided. Draw a line to match each word problem to the correct equation. Be prepared to justify your answers. Each problem is worth 3 points.

Verbal Description

Equation

1. 5 added to triple the first number is the second number. $f=$ the value of the firstnumber $h=$
2. The first number times 5 is 3 less than the second number. $f=$ the value of the first number $h=\underline{\text { the value of the second number }}$
3. The sum of the first number and triple the second number is 5 .
$f=$ the value of the first number
$h=$ the value of the second number
4. The quotient of the first number and 5 is equal to the difference of the second number and 3 .
$f=$ the value of the first number
$h=$ the value of the second number

Read the following situations and select the equation that represents the relationship given in the word problem.

1. The sum of the first number and 15 is equal to the second number. (1 pt.)
$f=$ the value of the first number.
$s=$ the value of the second number.

A $15+s=f$
B $\quad 15+f=s$
C $s+f=15$
D $15-f=s$
2. The product of the first number and 6 is equal to the difference of the second number and 2. (1 pt.)
$f=$ the value of the first number.
$s=$ the value of the second number.

A $6-s=2 f$
B $6-f=2 s$
C $6 f=s-2$
D $6 s=f-2$

Read the following situations and select the equation that represents the relationship given in the word problem.

1. The sum of the first number and 15 is equal to the second number. (1 pt.)
$f=$ the value of the first number.
$s=$ the value of the second number.

A $15+s=f$
B $15+f=s$
C $s+f=15$
D $15-f=s$
2. The product of the first number and 6 is equal to the difference of the second number and 2. (1 pt.)
$f=$ the value of the first number.
$s=$ the value of the second number.

A $6-s=2 f$
B $6-f=2 s$
C $6 f=s-2$
D $6 s=f-2$

Independent and Dependent

When 2 quantities vary together, there is an independent variable and a dependent variable.

Independent Variable

Dependent Variable

Read the following situations and identify the 2 quantities that vary and the independent and dependent variables.

1. Every day I eat pizza in the cafeteria. The cost of my lunch varies, or changes based on how many slices of pizza I buy.
$p=$ the number of slices of pizza I buy
$c=$ the total cost of my lunch

depends on

Independent variable \qquad
\qquad

Demonstration Practice (cont.)

2. Sandra has a job passing out flyers for a sandwich shop. The total number of flyers that she passes out each day is determined by the number of people that walk by her that day.
```
\(\ldots\) = the number of people that walk by
\(\ldots=\) the total number of flyers passed out
```

\qquad depends on

Independent variable \qquad

Dependent variable \qquad
3. Jonathan is trying to make money by washing cars in his neighborhood.

The number of cars that he washes will determine how much money that he makes.
_ $=$ the total amount of money made
$=$ the number of cars washed
depends on

Independent variable \qquad
Dependent variable \qquad

Demonstration Practice Key

Independent and Dependent

When 2 quantities vary together, there is an independent variable and a dependent variable.

Independent Variable	Dependent Variable
The independent variable determines the value of the other variable. It does not depend on any other variable.	The dependent variable depends on the value of the other variable.

Read the following situations and identify the 2 quantities that vary and the independent and dependent variables.

1. Every day I eat pizza in the cafeteria. The cost of my lunch varies, or changes based on how many slices of pizza I buy.
$p=$ the number of slices of pizza I buy
$c=$ the total cost of my lunch
total cost of lunch depends on
the number of pizza slices I buy.

Independent variable \qquad $p=$ the number of slices of pizza.

emonstration Practice Key (cont.)

2. Sandra has a job passing out flyers for a sandwich shop. The total number of flyers that she passes out each day is determined by the number of people that walk by her that day.
$\frac{p}{f}=$ the number of people that walk by
total number of flyers passed out
depends on
the number of people that walk by.

Independent variable \qquad $p=$ the number of people that walk by

Dependent variable
$f=$ the number of flyers passed out
3. Jonathan is trying to make money by washing cars in his neighborhood.

The number of cars that he washes will determine how much money that he makes.
$t=$ the total amount of money made
$C \quad=$ the number of cars washed
total amount of money made
depends on
number of cars washed.

Independent variable $c=$ number of cars washed

Dependent variable $t=$ total amount of money made

ractice

Pair Practice

Read the following situations and work with your partner to identify the 2 quantities that vary and the independent and dependent variables.

1. Marisol is putting money away each month to save for a vacation.

Every month she puts $\$ 25$ in her savings account.

depends on
2. Sara is trying to figure out her final grade in Mr. Reed's math class.

Each student gets a final grade based on the number of assignments that they turn in.

$$
\begin{aligned}
& \ldots=\text { the number of assignments turned in } \\
& =\text { the final grade }
\end{aligned}
$$

depends on

ractice Key

Pair Practice

Read the following situations and work with your partner to identify the 2 quantities that vary and the independent and dependent variables.

1. Marisol is putting money away each month to save for a vacation.

Every month she puts $\$ 25$ in her savings account.
$\frac{t}{m}=$ the total amount of money saved
total amount of money saved
depends on
number of months.
2. Sara is trying to figure out her final grade in Mr. Reed's math class.

Each student gets a final grade based on the number of assignments that they turn in.
$\frac{a}{f}=$ the number of assignments turned in
final grade final grade
depends on
number of assignments turned in.

Name:

\qquad
(1) ndependent Practice

Score: / 12 correct

Read the following situations. Choose a variable to represent each quantity and label as independent or dependent. Each problem is worth 4 points.

1. Jose just got a summer job where the total amount of money he makes each paycheck will be based on how many hours that he works.
\qquad
2. Mark drives his car a lot for work and frequently needs to change the oil in his car. The number of oil changes that Mark's car needs each year is determined by how many miles he drove that year.

3. Angelica is having a party for her birthday. The number of people that come to the party will determine how many pizzas that she will order.
\qquad $=$ the number of people that come to the party

I ndependent Practice Key

Read the following situations. Choose a variable to represent each quantity and label as independent or dependent. Each problem is worth 4 points.

1. Jose just got a summer job where the total amount of money he makes each paycheck will be based on how many hours that he works.

$\frac{h}{\text { independent }}=$ the number of hours that Jose works
p
dependent

2. Mark drives his car a lot for work and frequently needs to change the oil in his car. The number of oil changes that Mark's car needs each year is determined by how many miles he drove that year.
C
$\frac{c}{\text { dependent }}$
$\frac{m}{\text { independent }}=$ the number of oil changes Mark's car needs
3. Angelica is having a party for her birthday. The number of people that come to the party will determine how many pizzas that she will order.
$\frac{p}{\text { dependent }}=$ the number of pizzas that Angelica orders
$\frac{t}{t}=$ the number of people that come to the party
independent

Read the following situation and select the equation that represents the relationship given in the word problem. (1 pt.)

1. The product of the first number and 6 is equal to the quotient of 24 and
a second number.
$f=$ the value of the first number
$s=$ the value of the second number
A $6 f=24+s$
C $f+6=24 s$
B $\quad 6+s=24-f$
D $\quad 6 f=24 \div s$

Read the following situation and label each quantity that varies as independent or dependent. (4 pts.)
2. The total amount of money that Aldo spends on gas each month is determined by the number of miles that he drives that month.
\ldots = the number of miles driven each month

$$
\ldots \text { = the total amount of money spent on gas }
$$

Read the following situation and select the equation that represents the relationship given in the word problem. (1 pt.)

1. The product of the first number and 6 is equal to the quotient of 24 and a second number.
$f=$ the value of the first number
$s=$ the value of the second number
A $6 f=24+s$
C $f+6=24 s$
B $\quad 6+s=24-f$
D $6 f=24 \div s$

Read the following situation and label each quantity that varies as independent or dependent. (4 pts.)
2. The total amount of money that Aldo spends on gas each month is determined by the number of miles that he drives that month.

```
\(m=\) the number of miles driven each month
```

independent

\qquad

Demonstration Practice

1. Word Problem:	Define Variable(s)f
Alicia works at an electronic	Let the variable _-
stand for where she makes \$11	
each hour.	
Find the total amount of	
money Alicia makes.	Let the variable stand for Write an Equations

Write an equation that can be used to find the total amount of money that Alicia makes based on how many hours that she works.

Calculate the money earned

Demonstration Practice (cont.)

2. Word problem:	Define Variable(s)z
The total cost of shipping a	Let the variable package is \$2 per pound. Find the total cost of for shipping a package.

Write an Equation:

Write an equation that can be used to find the total cost of a package based on its weight.

Calculate the
package shipping cost

Demonstration Practice (cont.)

3. Word Problem:	Define Varfable(s)f
Stephen is saving up to	Let the variable _-
buy a car. He is putting \$40 for	
per month in his savings	
account. Find the total	Let the variable amount Stephen has saved. stand for

Write an Equation:

Write an equation that can be used to find the total amount of money that Stephen saves based on the number of months he has saved for.

Calculate the savings

1. Word Problem:	Define Variable(S):
Alicia works at an electronic	Let the variable $\frac{t}{\text { stand for } \frac{\text { total amount of }}{\text { money that Alicia makes. }}}$ store where she makes $\$ 11$ each hour. Find the total amount of money Alicia makes.
Let the variablestand forhumber of	

Write an Equation:

Write an equation that can be used to find the total amount of money that Alicia makes based on how many hours that she works.

Calculate the money earned
$1 \perp h$
:---:

Demonstration Practice Key (cont.)

2. Word Problem:

The total cost of shipping a
package is $\$ 2$ per pound.
Find the total cost of
shipping a package.

Define Variable(s):

Let the variable $\quad t$
stand for \qquad
shipping the package.

Let the variable \qquad stand for \qquad weight of the package in pounds.

Write an Equation:

Write an equation that can be used to find the total cost of a package based on its weight.

Calculate the package shipping cost $2 W$

Demonstration Practice Key (cont.)

3. Word Problem:	Define Variable(s)f
Stephen is saving up to	Let the variable $\frac{t}{\text { total amount of }}$
per month in his savings	
account. Find the total	
amount Stephen has saved.	Let the variablemoney saved. stand for $\frac{m}{\text { the number of }}$ months.

Write an Equation:

Write an equation that can be used to find the total amount of money that Stephen saves based on the number of months he has saved for.

Calculate the savings
$40 m$
:---:
t

Pair Practice

For each of the following situations, work with your partner to define the variables and write the equation to represent the situation.

Jorge went to the carnival with his friend. The carnival charges \$3 per ride. Jorge needs to figure out how much money he will spend at the carnival based on the number of rides he takes.

1. Determine and define the variables:

Let the variable \qquad
stand for \qquad

Let the variable \qquad
stand for \qquad
2. Based on the variables you defined above, write an equation to represent the carnival situation above.

Pair Practice

For each of the following situations, work with your partner to define the variables and write the equation to represent the situation.

Jorge went to the carnival with his friend. The carnival charges \$3 per ride. Jorge needs to figure out how much money he will spend at the carnival based on the number of rides he takes.

1. Determine and define the variables:

Let the variable \qquad
stand for the number of rides

Let the variable \qquad
stand for amount of money spent
2. Based on the variables you defined above, write an equation to represent the carnival situation above.

Name:

\qquad
(I) ndependent Practice Score: / 4 correct

Read the following word problems and find the matching equation that represents the relationship. Each match is worth 1 point.

1. Sally works at a cell phone store where she earns $\$ 15$ commission for every cell phone (c) that she sells. Find the equation for the total (t) money made.

A $t=3 c$
2. The cost (c) of the membership to a gym
is $\$ 15$ per month (t). Find the equation for the total cost for t months.

B $\quad c=3 t$
3. A DVD club charges $\$ 3$ per DVD (c). Find the equation for the total (t) cost of the DVD club per month.

C $c=15 t$
4. The cost (c) of renting a canoe is $\$ 3$ per
hour (t). Find the equation for the total cost for renting a canoe t hours.

D $t=15 c$

I ndependent Practice Key

Score: \qquad / 4 correct

Read the following word problems and find the matching equation that represents the relationship. Each match is worth 1 point.

1. Sally works at a cell phone store where she earns $\$ 15$ commission for every cell phone (c) that she sells. Find the equation for the total (t) money made. \qquad A $t=3 c$
2. The cost (c) of the membership to a gym is $\$ 15$ per month (t). Find the equation for the total cost for t months. \qquad B
$c=3 t$
3. A DVD club charges $\$ 3$ per DVD (c). Find the equation for the total (t) cost of the DVD club per month.

C $c=15 t$
4. The cost (c) of renting a canoe is $\$ 3$ per hour (t). Find the equation for the total cost for renting a canoe t hours.

B
D $\quad t=15 c$

1. Read the following situation. Label each quantity that varies as independent or dependent. (2 pts.)

Amirali was organizing a dinner party for his company. The number of people who attend the function will determine the cost for the dinner party.

$$
p=\text { the number of people attending }
$$

$c=$ the cost of the dinner party
2. For the following word problem select the equation that represents the relationship. (1 pt.)

The neighborhood butcher is having a sale on steaks. The butcher is selling steaks for $\$ 5$ per pound (p). Find the equation for the total cost (t) of buying steaks based on the number of pounds.

A $t=5 p$
B $\quad p=5+t$
C $p=5 t$
D $\quad t=5+p$

1. Read the following situation. Label each quantity that varies as independent or dependent. (2 pts.)

Amirali was organizing a dinner party for his company. The number of people who attend the function will determine the cost for the dinner party.

$$
p=\text { the number of people attending }
$$ independent

$c=$ the cost of the dinner party dependent
2. For the following word problem select the equation that represents the relationship. (1 pt.)

The neighborhood butcher is having a sale on steaks. The butcher is selling steaks for $\$ 5$ per pound (p). Find the equation for the total cost (t) of buying steaks based on the number of pounds.

A $t=5 p$
B $\quad p=5+t$
C $p=5 t$
D $\quad t=5+p$

D emonstration Practice

For each of the following situations, define and describe the variables, create an equation and a table representation.

Demonstration Practice (cont.)

Demonstration Practice (cont.)

D emonstration Practice Key

For each of the following situations, define and describe the variables, create an equation and a table representation.

Demonstration Practice Key (cont.)

2. Word Problem:

The cost of a taxi ride in
Chicago is $\$ 0.50$ per mile plus an additional fee of $\$ 5$.

Find the total cost of a taxi ride.

Write an Equation:

Write an equation that can be used to find the total cost of a taxi ride based on the distance traveled.

Total Cost t

Define Variable(s):

Let the variable \qquad stand for the total cost
of taxi ride.

Let the variable \qquad stand for the number of
miles driven.

Make a Table:

Use the table to find out how much a taxi ride costs for different distances traveled.

m	Process	t
1	$0.50(1)+5$	5.50
2	$0.50(2)+5$	6
3	$0.50(3)+5$	6.50

(answers may vary)

Demonstration Practice Key (cont.)

3. Word Problem:	Define Vartable(s):
Johanna is planning a trip and will rent a car. The cost of renting a car is $\$ 10$ per day plus the initial fee of $\$ 25$. Find the total cost of a rental car.	Let the variablestand for the number of days renting a car. Let the variable $\quad t$ stand for total cost of renting the car.
Write an Equation	Make a Taber
Write an equation that can be used to find the total rental cost based on how long Johanna rents the car.	Use the table to find out the total cost for different number of days.
Cost of Days Initial Fee Total Cost	d ${ }^{\text {d }}$ Process ${ }^{\text {a }}$ (10
	$1{ }^{\text {1 }}$
10d 25	2 $10(2)+25$ 45
+ $=$	$3 \mathrm{l\|l\|l}$
	(answers may vary)

ractice

Pair Practice

With a partner, define and describe the variables, circle the letter for the correct equation and table representation.

Peter signed up for a new cell phone plan. His plan each month will cost him $\$ 35$ plus $\$ 0.10$ per minute.

Define and describe variables to represent each of the unknown values:
\qquad
\qquad

1. The equation that represents the situation is:
A $c=0.10 m+35$
C $\quad m=0.10 c+35$
B $\quad c=35.10 m$
D $\quad c+35=0.10 m$
2. The table that represents the situation is:

A \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| minutes (m) | \& | Total phone |
| :---: |
| bill cost (c) |

\hline 20 \& 55

\hline 50 \& 85

\hline 100 \& 135

\hline
\end{tabular}

C \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| minutes (m) | \& | Total phone |
| :---: |
| bill cost (c) |

\hline 55 \& 20

\hline 85 \& 50

\hline 135 \& 100

\hline
\end{tabular}

B \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| minutes (m) | \& | Total phone |
| :---: |
| bill cost (c) |

\hline 37 \& 20

\hline 40 \& 50

\hline 45 \& 100

\hline
\end{tabular}

D | Number of | Total phone |
| :---: | :--- |

minutes (m)	bill cost (c)
20	37
50	40
100	45

ractice Key

Pair Practice

With a partner, define and describe the variables, circle the letter for the correct equation and table representation.

Peter signed up for a new cell phone plan. His plan each month will cost him $\$ 35$ plus $\$ 0.10$ per minute.

Define and describe variables to represent each of the unknown values:

$$
m=\text { the number of minutes used. }
$$

\qquad
$c=$ the cost of his plan each month.

1. The equation that represents the situation is:
A $c=0.10 m+35$
C $\quad m=0.10 c+35$
B $\quad c=35.10 m$
D $\quad c+35=0.10 m$
2. The table that represents the situation is:

ANumber of minutes (\boldsymbol{m}) Total phone bill cost (c) 20 55 50 85 100 135\quadNumber of minutes (\boldsymbol{m}) Total phone bill cost (c) 55 20 85 50 135 100 40 50 45 100 Number of minutes (m) Total phone bill cost (c) 37 20Number of minutes (m)
Total phone bill cost (c)
20
50
100

E rror Correction Practice

The given situation is work completed by a student. Determine the error in the students work and explain your reasoning.

For the given situation, write the equation and complete a table.

Isabella rented a motor scooter for the day. To rent a scooter, it costs $\$ 20$ plus an additional $\$ 10$ an hour.

$$
c=10+20 h
$$

Hours Rented (h)	Total Cost (c)
1	30
2	50
3	70

rror Correction Practice Key
The given situation is work completed by a student. Determine the error in the students work and explain your reasoning.

For the given situation, write the equation and complete a table.

Isabella rented a motor scooter for the day. To rent a scooter, it costs $\$ 20$ plus an additional $\$ 10$ an hour.

$$
c=10+20 h
$$

Hours Rented (\boldsymbol{h})	Total Cost (c)
1	30
2	50
3	70

The equation is wrong. It should be
$c=10 h+20$. The unit rate is $\$ 10$ an hour,
therefore $\$ 10$ is multiplied by the number of
hours. The table is also wrong. The cost of
renting for 2 hours should be $\$ 40$ and the cost
of renting for 3 hours should be $\$ 50$.
\qquad

I ndependent Practice

For the following situation, circle the correct equation and table representation.

George signed up for a new cable plan. Each month, he is charged a $\$ 50$ fee, plus $\$ 5$ per movie package. Find George's total cost for cable.

1. The equation that represents the situation is: (1 pt.)
$\mathbf{A} \quad c=m+50$
C $\quad c=50 m$
B $c=5 m+50$
D $\quad c=50 m+5$
2. The table that represents the situation is: (1 pt.)
A

Movie packages(m)	cost (c)
1	50
2	55
3	60

C

Movie packages(m)	cost (c)
1	55
2	60
3	65

B

Movie packages(m)	cost (c)
1	50
2	100
3	150

D

Movie packages(m)	cost (c)
1	5
2	55
3	105

I ndependent Practice Key

\qquad / 2 correct

For the following situation, circle the correct equation and table representation.

George signed up for a new cable plan. Each month, he is charged a \$50 fee, plus \$5 per movie package. Find George's total cost for cable.

1. The equation that represents the situation is: (1 pt.)
A $\quad c=m+50$
C $c=50 m$
B $\quad c=5 m+50$
D $\quad c=50 m+5$
2. The table that represents the situation is: (1 pt.)

A	Movie packages(m)
1	cost (c)
2	50
3	55

Movie packages(m)	cost (c)
1	55
2	60
3	65

B

Movie packages(m)	cost (c)
1	50
2	100
3	150

D

Movie packages(m)	cost (c)
1	5
2	55
3	105

\qquad / 3 correct

1. Read the following word problem and select the equation that represents the relationship. (1 pt.)

The cost (c) of renting a bike to tour downtown is $\$ 15$ per hour (h).
Find the equation for the total cost for renting a bike.
A $\quad c=h+15$
C $h=15 c$
B $\quad h=c+15$
D $\quad c=15 h$

Use the following word problem to answer questions 2 and 3.
Nikita is planning the company summer party. The party will cost (c)
$\$ 6$ per person (p) plus a rental fee of $\$ 65$ for setup services.
2. Select the equation that represents the word problem. (1 pt.)
A $c=65 p+6$
C $\quad c=p+65$
B $\quad c=6 p+65$
D $\quad c=p+6$
3. Select the table that represents the word problem. (1 pt.)

$\left.$| \mathbf{A} | Number of
 People (\boldsymbol{p}) |
| :---: | :---: | | Total |
| :---: |
| Cost (\boldsymbol{c}) | \right\rvert\, | 1 | 71 |
| :---: | :---: |
| 2 | 77 |
| 3 | 83 |

C \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| People (\boldsymbol{p}) | \& | Total |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 1 \& 65

\hline 2 \& 71

\hline 3 \& 77

\hline
\end{tabular}

B \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| People (p) | \& | Total |
| :---: |
| Cost ($\boldsymbol{c})$ |

\hline 1 \& 71

\hline 2 \& 136

\hline 3 \& 201

\hline
\end{tabular}

D \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| People (\boldsymbol{p}) | \& | Total |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 1 \& 66

\hline 2 \& 67

\hline 3 \& 68

\hline
\end{tabular}

1. Read the following word problem and select the equation that represents the relationship. (1 pt.)

The cost (c) of renting a bike to tour downtown is $\$ 15$ per hour (h).
Find the equation for the total cost for renting a bike.
A $\quad c=h+15$
C $h=15 c$
B $\quad h=c+15$
D $\quad c=15 h$

Use the following word problem to answer questions 2 and 3.
Nikita is planning the company summer party. The party will cost (c) $\$ 6$ per person (p) plus a rental fee of $\$ 65$ for setup services.
2. Select the equation that represents the word problem. (1 pt.)
A $c=65 p+6$
C $\quad c=p+65$
B $\quad c=6 p+65$
D $\quad c=p+6$
3. Select the table that represents the word problem. (1 pt.)

Number of People (\boldsymbol{p})	Total Cost (\boldsymbol{c})
1	71
2	77
3	83

C \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| People (\boldsymbol{p}) | \& | Total |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 1 \& 65

\hline 2 \& 71

\hline 3 \& 77

\hline
\end{tabular}

	Number of People (\boldsymbol{p})
1	Total Cost (\boldsymbol{c})
2	71
3	136

D \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| People (\boldsymbol{p}) | \& | Total |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 1 \& 66

\hline 2 \& 67

\hline 3 \& 68

\hline
\end{tabular}

D emonstration Practice

For each of the following situations, define and describe the variables, create an equation and a table representation.

1. Word Problem:

Margret is selling cups of lemonade to earn money. She already has \$5 and is selling the lemonade for $\$ 1.50$ per cup.

Find the total amount of money Margret has.

Write an Equation:

Write an equation that can be used to find Margret's total amount of money based on the number of cups of lemonade she has sold.

Define Variable(s):

Let the variable \qquad stand for \qquad

Let the variable \qquad stand for \qquad

Make a Table:

Use the table to calculate the varying amount of money Margret made for your selected numbers of cups of lemonade sold.

Demonstration Practice (cont.)

2. Word Problem:

Lilia wants to rent a motor
scooter. To rent a scooter it
costs $\$ 0.30$ per mile, plus
an initial fee of $\$ 45$. Find the
total cost to rent a scooter.

Write an Equation:

Write an equation that can be used to find the total cost of renting a motor scooter based on the number of miles driven.

Define Variable(s):

Let the variable \qquad stand for \qquad

Let the variable \qquad stand for \qquad

Make a Table:

Use the table to calculate the varying costs to rent a scooter for your selected numbers of miles driven.

	Process	

Demonstration Practice (cont.)

3. Word Problem:

Lorenzo joined a soccer
league for $\$ 20$. Lorenzo pays
\$5 for each game he plays.
Find the total cost to play on
the soccer league.

Write an Equation:

Write an equation that can be used to find the total cost for Lorenzo to play soccer based on the number of games he plays.

Define Variable(s):

Let the variable \qquad stand for \qquad

Let the variable \qquad stand for \qquad

Make a Table:

Use the table to calculate the varying total costs for the league for your selected numbers of soccer games played.

	Process	

Demonstration Practice Key

For each of the following situations, define and describe the variables, create an equation and a table representation.

1. Word Problem:
Define Variable(s):

Margret is selling cups of lemonade to earn money. She already has \$5 and is selling the lemonade for $\$ 1.50$ per cup.

Find the total amount of money Margret has.

Write an Equation:

Write an equation that can be used to find Margret's total amount of money based on the number of cups of lemonade she has sold.
$1.50 c+5=t$

Let the variable \qquad stand for \qquad
the number of cups sold.

Let the variable \qquad stand for \qquad
the total amount of money.

Make a Table:

Use the table to calculate the varying amount of money Margret made for your selected numbers of cups of lemonade sold.

c	Process	t
2	$1.50(2)+5$	8.00
3	$1.50(3)+5$	9.50
4	$1.50(4)+5$	11.00

(answers may vary)

Demonstration Practice Key (cont.)

2. Word Problem:	Define Variable(s):		
Lilia wants to rent a motor scooter. To rent a scooter it costs $\$ 0.30$ per mile, plus an initial fee of $\$ 45$. Find the total cost to rent a scooter.	Let the stand for Let the stand for	iable t \qquad the total cost of the r iable \qquad the number of miles driv	al.
Write an Equation:	Make a Table:		
Write an equation that can be used to find the total cost of renting a motor scooter based on the number of miles driven.	Use the table to calculate the varying costs to rent a scooter for your selected numbers of miles driven.		
	m	Process	t
	5	. 30 (5)+45	46.50
	10	. 30 (10)+45	47.00
$t=.30 m+45$	20	. $30(20)+45$	51.00
	(answers may vary)		

Demonstration Practice Key (cont.)

3. Word Problem:

Lorenzo joined a soccer
league for $\$ 20$. Lorenzo pays
\$5 for each game he plays.
Find the total cost to play on
the soccer league.

Write an Equation:

Write an equation that can be used to find the total cost for Lorenzo to play soccer based on the number of games he plays.

$$
t=5 g+20
$$

Define Variable(s):

Let the variable \qquad stand for the number of
games played.

Let the variable \qquad stand for the total cost
of the soccer league.

Make a Table:

Use the table to calculate the varying total costs for the league for your selected numbers of soccer games played.

g	Process	t
5	$5(5)+20$	45
10	$5(10)+20$	70
15	$5(15)+20$	95

(answers may vary)

Pair Practice

With a partner, define and describe the variables, circle the letter for the correct equation and table representation.

At a local copy shop, it costs $\$ 0.50$ per page of colored copy plus an
initial processing fee of $\$ 4$. Find the cost of making color copies.
Define and describe variables to represent each of the unknown values:

1. The equation that represents the situation is:
A $\quad p=0.50 c+5$
C $\quad c=0.50 p+4$
B $\quad c+4=0.50 p$
D $c=4.50 p$
2. The table that represents the situation is:

$\left.$| \mathbf{A} | Number of
 Pages (p) |
| :---: | :---: | | Total Copy |
| :---: |
| Cost (c) | \right\rvert\, | 5 | 2 |
| :---: | :---: |
| 7 | 6 |
| 9 | 10 |

C \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Pages (\boldsymbol{p}) | \& | Total Copy |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 2 \& 9

\hline 6 \& 27

\hline 10 \& 45

\hline
\end{tabular}

B \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Pages (\boldsymbol{p}) | \& | Total Copy |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 2 \& 5

\hline 6 \& 7

\hline 10 \& 9

\hline
\end{tabular}

D \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Pages (\boldsymbol{p}) | \& | Total Copy |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 2 \& 4.50

\hline 6 \& 5.50

\hline 10 \& 8

\hline
\end{tabular}

P ractice Key

Pair Practice

With a partner, define and describe the variables, circle the letter for the correct equation and table representation.

At a local copy shop, it costs $\$ 0.50$ per page of colored copy plus an
initial processing fee of $\$ 4$. Find the cost of making color copies.
Define and describe variables to represent each of the unknown values:

$$
c=\text { the cost of the copies }
$$

$$
p=\text { the the number of pages }
$$

1. The equation that represents the situation is:
A $\quad p=0.50 c+5$

B
$c+4=0.50 p$
D $c=4.50 p$
2. The table that represents the situation is:

$\left.$| \mathbf{A} | Number of
 Pages (p) |
| :---: | :---: | | Total Copy |
| :---: |
| Cost (c) | \right\rvert\, | 5 | 2 |
| :---: | :---: |
| 7 | 6 |
| 9 | 10 |

C \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Pages (\boldsymbol{p}) | \& | Total Copy |
| :---: |
| Cost (\boldsymbol{c}) |

\hline 2 \& 9

\hline 6 \& 27

\hline 10 \& 45

\hline
\end{tabular}

D \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Pages (p) | \& | Total Copy |
| :---: |
| Cost (c) |

\hline 2 \& 4.50

\hline 6 \& 5.50

\hline 10 \& 8

\hline
\end{tabular}

rror Correction Practice

The given situations are work completed by two different students. Determine which student is incorrect and explain the error(s).

Given the following contextual situation, write an equation to describe the relationship between the quantities that vary.

Marie and Joanna are renting a canoe. The canoe rental costs a flat fee of $\$ 7$ plus $\$ 5$ per hour (h). Find the equation for the total cost (c).

Student 1:

$7 h+5=c$
$7+5 h=c$

rror Correction Practice Key

The given situations are work completed by two different students. Determine which student is incorrect and explain the error(s).

Given the following contextual situation, write an equation to describe the relationship between the quantities that vary.

Marie and Joanna are renting a canoe. The canoe rental costs a flat fee of $\$ 7$ plus $\$ 5$ per hour (h). Find the equation for the total cost (c).

Student 1:

Student 2:

$$
7 h+5=c
$$

$$
7+5 h=c
$$

Student 1 was incorrect because \$5 per hour
should be $5 h$ and a flat fee is +7 ,
so the equation should be $7+5 h=c$.
\qquad

I ndependent Practice

 Score: / 2 correctFor the following situation, circle the correct equation and table representation.

Amir is purchasing a pizza from a local shop. The pizza costs $\$ 12$ plus $\$ 0.50$ for each topping. Find the cost of a pizza.

1. The correct equation is: (1 pt.)
A $\quad c=t+12$
C $c=12.50 t$
B $\quad c=12 t+0.50$
D $\quad c=0.50 t+12$
2. The correct table is: (1 pt.)

$\left.$| \mathbf{A} | Number of
 Toppings ($\boldsymbol{t})$ |
| :---: | :---: | | Cost of a |
| :---: |
| Pizza (c) | \right\rvert\, | 1 |
| :---: |

C \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Toppings ($\boldsymbol{t})$ | \& | Cost of a |
| :---: |
| Pizza ($\boldsymbol{c})$ |

\hline 1 \& 12.50

\hline 2 \& 13.00

\hline 3 \& 13.50

\hline
\end{tabular}

$\left.$| \mathbf{B} | Number of
 Toppings ($\boldsymbol{t})$ |
| :---: | :---: | | Cost of a |
| :---: |
| Pizza (c) | \right\rvert\, | 1 | 12.00 |
| :---: | :---: |
| 2 | 13.00 |
| 3 | 14.00 |

D

Number of Toppings (\boldsymbol{t})	Cost of a Pizza (\boldsymbol{c}
1	12.50
2	24.00
3	36.50

I ndependent Practice Key

\qquad
For the following situation, circle the correct equation and table representation.

Amir is purchasing a pizza from a local shop. The pizza costs $\$ 12$ plus $\$ 0.50$ for each topping. Find the cost of a pizza.

1. The correct equation is: (1 pt.)
A $\quad c=t+12$
C $c=12.50 t$

B $\quad c=12 t+0.50$ D $\quad c=0.50 t+12$
2. The correct table is: (1 pt.)

A

Number of Toppings ($\boldsymbol{t})$	Cost of a Pizza (\boldsymbol{c}
1	13.50
2	14.00
3	14.50

B \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Toppings (\boldsymbol{t}) | \& | Cost of a |
| :---: |
| Pizza (c) |

\hline 1 \& 12.00

\hline 2 \& 13.00

\hline 3 \& 14.00

\hline
\end{tabular}

D \begin{tabular}{|c|c|}

\hline | Number of |
| :---: |
| Toppings (\boldsymbol{t}) | \& | Cost of a |
| :---: |
| Pizza (\boldsymbol{c} |

\hline 1 \& 12.50

\hline 2 \& 24.00

\hline 3 \& 36.50

\hline
\end{tabular}

[^0]: The generalization of this pattern is $\quad 3 n+2$

[^1]: The generalization of this pattern is $2 n+5$

